Abstract
In this work we study the parallel coordinate descent method (PCDM) proposed by Richtárik and Takáč [Parallel coordinate descent methods for big data optimization, Math. Program. Ser. A (2015), pp. 1–52] for minimizing a regularized convex function. We adopt elements from the work of Lu and Xiao [On the complexity analysis of randomized block-coordinate descent methods, Math. Program. Ser. A 152(1–2) (2015), pp. 615–642], and combine them with several new insights, to obtain sharper iteration complexity results for PCDM than those presented in [Richtárik and Takáč, Parallel coordinate descent methods for big data optimization, Math. Program. Ser. A (2015), pp. 1–52]. Moreover, we show that PCDM is monotonic in expectation, which was not confirmed in [Richtárik and Takáč, Parallel coordinate descent methods for big data optimization, Math. Program. Ser. A (2015), pp. 1–52], and we also derive the first high probability iteration complexity result where the initial levelset is unbounded.
Author supplied keywords
Cite
CITATION STYLE
Tappenden, R., Takáč, M., & Richtárik, P. (2018). On the complexity of parallel coordinate descent. Optimization Methods and Software, 33(2), 372–395. https://doi.org/10.1080/10556788.2017.1392517
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.