Exploring the universe of protein structures beyond the protein data bank

55Citations
Citations of this article
133Readers
Mendeley users who have this article in their library.

Abstract

It is currently believed that the atlas of existing protein structures is faithfully represented in the Protein Data Bank. However, whether this atlas covers the full universe of all possible protein structures is still a highly debated issue. By using a sophisticated numerical approach, we performed an exhaustive exploration of the conformational space of a 60 amino acid polypeptide chain described with an accurate all-atom interaction potential. We generated a database of around 30,000 compact folds with at least 30% of secondary structure corresponding to local minima of the potential energy. This ensemble plausibly represents the universe of protein folds of similar length; indeed, all the known folds are represented in the set with good accuracy. However, we discover that the known folds form a rather small subset, which cannot be reproduced by choosing random structures in the database. Rather, natural and possible folds differ by the contact order, on average significantly smaller in the former. This suggests the presence of an evolutionary bias, possibly related to kinetic accessibility, towards structures with shorter loops between contacting residues. Beside their conceptual relevance, the new structures open a range of practical applications such as the development of accurate structure prediction strategies, the optimization of force fields, and the identification and design of novel folds. © 2010 Cossio et al.

Cite

CITATION STYLE

APA

Cossio, P., Trovato, A., Pietrucci, F., Seno, F., Maritan, A., & Laio, A. (2010). Exploring the universe of protein structures beyond the protein data bank. PLoS Computational Biology, 6(11). https://doi.org/10.1371/journal.pcbi.1000957

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free