Characterization and application of tannase and gallic acid produced by co-fungi of Aspergillus niger and Trichoderma viride utilizing agro-residues substrates

5Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Bioconversion using fungi, as natural factory of many applicable bioactive compounds, as enzymes utilizing agro-residue substrates as a solid, abundant, low-cost growth and enzyme production media. This study characterized and applied a tannase enzyme (308 U/mg) from Aspergillus niger A8 + Trichoderma viride co-cultures utilizing pomegranate peels. The partially purified enzyme showed maximal relative activity at 37–65 °C for 10 min and kinetics of thermal inactivation energy at a high point at 60 °C for 0.040/min. The half-life was 37 °C for 58.6 min, temperature coefficient Q10 of tannase was maximal for 1.38 between 40 and 50 °C, and the activation energy was 17.42 kJ/mol. The enzyme activity peaked in the pH range of 4–8, and the maximum relative activity (100.6%) for tannase was achieved at pH 6. The Km and Vmax values for purified enzymes using tannic acid were 7.3 mg/mL and 3333.33 U/mL, respectively. The enzyme reduced the total tannin content in all tannin-rich substrates after 12h. The gallic acid (GA) had total phenols of 77.75 ppm and antioxidant activity of 82.91%. It was observed that the GA as antimicrobial influencer exhibited the largest inhibitory zone diameter (IZD) of 31 ± 1.0 mm against Pseudomonas aeruginosa ATCC27853. The GA minimum inhibitory concentration value was ranged from 7770.0–121.41 µg/mL. The obtained GA showed a bactericidal effect against all bacterial strains except Shigella sonnei DSM5570 and Salmonella typhi DSM17058, which showed bacteriostatic behavior.

Cite

CITATION STYLE

APA

Ahmed, A. I., Abou-Taleb, K. A. A., & Abd-Elhalim, B. T. (2023). Characterization and application of tannase and gallic acid produced by co-fungi of Aspergillus niger and Trichoderma viride utilizing agro-residues substrates. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43955-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free