Subset Multivariate Collective and Point Anomaly Detection

10Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In the recent years, there has been a growing interest in identifying anomalous structure within multivariate data sequences. We consider the problem of detecting collective anomalies, corresponding to intervals where one, or more, of the data sequences behaves anomalously. We first develop a test for a single collective anomaly that has power to simultaneously detect anomalies that are either rare, that is affecting few data sequences, or common. We then show how to detect multiple anomalies in a way that is computationally efficient but avoids the approximations inherent in binary segmentation-like approaches. This approach is shown to consistently estimate the number and location of the collective anomalies—a property that has not previously been shown for competing methods. Our approach can be made robust to point anomalies and can allow for the anomalies to be imperfectly aligned. We show the practical usefulness of allowing for imperfect alignments through a resulting increase in power to detect regions of copy number variation. Supplemental files for this article are available online.

Cite

CITATION STYLE

APA

Fisch, A. T. M., Eckley, I. A., & Fearnhead, P. (2022). Subset Multivariate Collective and Point Anomaly Detection. Journal of Computational and Graphical Statistics, 31(2), 574–585. https://doi.org/10.1080/10618600.2021.1987257

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free