Enhanced sensing behavior of three-dimensional microfluidic paper-based analytical devices (3d-µpads) with evaporation-free enclosed channels for point-of-care testing

8Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Despite the potential in fabrication of microfluidic paper-based analytical devices (µPADs) for point-of-care testing (POCT) kits, the development of simple, accurate, and rapid devices with higher sensitivity remains challenging. Here, we report a novel method for 3D-µPAD fabrication with enclosed channels using vat photopolymerization to avoid fluid evaporation. In detail, height of the enclosed channels was adjusted from 0.3 to 0.17 mm by varying the UV exposure time from 1 to 4 s for the top barrier, whereas the exposure time for the bottom and side barriers was fixed. As a result, sample flow in the enclosed channels of 3D-µPADs showed lesser wicking speed with very scant evaporation compared to that in the hemi channels in the 3D-µPADs. The stoppage of evaporation in the enclosed channels significantly improved the gray intensity and uniformity in the detection zone of the 3D-µPADs, resulting in as low as 0.3 mM glucose detection. Thus 3D-µPADs with enclosed channels showed enhanced sensitivity compared to the 3D-µPADs with hemi channels when dealing with a small volume sample. Our work provides a new insight into 3D-µPAD design with enclosed channels, which redefines the methodology in 3D printing.

Cite

CITATION STYLE

APA

Jeon, J., Park, C., Ponnuvelu, D. V., & Park, S. (2021). Enhanced sensing behavior of three-dimensional microfluidic paper-based analytical devices (3d-µpads) with evaporation-free enclosed channels for point-of-care testing. Diagnostics, 11(6). https://doi.org/10.3390/diagnostics11060977

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free