Circulating insulin-like growth factor-1 and brain health: Evidence from 369,711 participants in the UK Biobank

25Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The effects of insulin-like growth factor-1 (IGF-1) deficiency on cognitive decline have been consistently reported in animal studies, but the relationship between IGF-1 and human brain health remains controversial. Our study aimed to investigate the associations of serum IGF-1 concentrations with some brain-related disorders and neuroimaging features. Methods: This prospective study included 369,711 participants (55.8 ± 8.1 years) from the UK biobank who had serum IGF-1 measured and were free from brain-related disorders of interest — dementia, stroke, and Parkinson’s disease (PD) — at enrollment (2006–2010). Restricted cubic splines and Cox proportional hazards models were used to detect the associations between IGF-1 concentrations and brain-related diseases. In addition, general linear regressions were applied to explore the relationship between IGF-1 concentrations and neuroimaging features (volumes of white matter, grey matter, and hippocampus and white matter hyperintensity) among a sub-sample of 36,458 participants with magnetic resonance imaging data collected since 2014. Results: During a median follow-up of 12.6 years, a total of 4,857 dementia, 6,240 stroke, and 2,116 PD cases were documented. The dose–response analyses yielded U-shaped relationships between IGF-1 concentrations and risks of dementia and stroke (P < 0.001 for non-linearity), with the lowest risks at 18 nmol/L and 26 nmol/L, respectively. A positive linear relationship was observed between IGF-1 concentrations and risk of PD (P = 0.163 for non-linearity). Moreover, neuroimaging analyses showed that higher IGF-1 concentrations were associated with greater volumes of white matter (β = 2.98 × 10–4, P < 0.001) and hippocampus (β = 3.37 × 10–4, P = 0.002) and smaller white matter hyperintensity (β = -3.12 × 10–3, P < 0.001). Conclusions: Apart from the diverse associations with neuroimaging features, both low and high IGF-1 concentrations are associated with increased risks of dementia and stroke and higher IGF-1 concentrations are linked to a higher risk of PD, highlighting the potential of IGF-1 as a biomarker for risk stratification of brain health.

Cite

CITATION STYLE

APA

Cao, Z., Min, J., Tan, Q., Si, K., Yang, H., & Xu, C. (2023). Circulating insulin-like growth factor-1 and brain health: Evidence from 369,711 participants in the UK Biobank. Alzheimer’s Research and Therapy, 15(1). https://doi.org/10.1186/s13195-023-01288-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free