Abstract
A stable anode-free all-solid-state battery (AF-ASSB) with sulfide-based solid-electrolyte (SE) (argyrodite Li6PS5Cl) is achieved by tuning wetting of lithium metal on “empty” copper current-collector. Lithiophilic 1 µm Li2Te is synthesized by exposing the collector to tellurium vapor, followed by in situ Li activation during the first charge. The Li2Te significantly reduces the electrodeposition/electrodissolution overpotentials and improves Coulombic efficiency (CE). During continuous electrodeposition experiments using half-cells (1 mA cm−2), the accumulated thickness of electrodeposited Li on Li2Te–Cu is more than 70 µm, which is the thickness of the Li foil counter-electrode. Full AF-ASSB with NMC811 cathode delivers an initial CE of 83% at 0.2C, with a cycling CE above 99%. Cryogenic focused ion beam (Cryo-FIB) sectioning demonstrates uniform electrodeposited metal microstructure, with no signs of voids or dendrites at the collector-SE interface. Electrodissolution is uniform and complete, with Li2Te remaining structurally stable and adherent. By contrast, an unmodified Cu current-collector promotes inhomogeneous Li electrodeposition/electrodissolution, electrochemically inactive “dead metal,” dendrites that extend into SE, and thick non-uniform solid electrolyte interphase (SEI) interspersed with pores. Density functional theory (DFT) and mesoscale calculations provide complementary insight regarding nucleation-growth behavior. Unlike conventional liquid-electrolyte metal batteries, the role of current collector/support lithiophilicity has not been explored for emerging AF-ASSBs.
Author supplied keywords
Cite
CITATION STYLE
Wang, Y., Liu, Y., Nguyen, M., Cho, J., Katyal, N., Vishnugopi, B. S., … Mitlin, D. (2023). Stable Anode-Free All-Solid-State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector. Advanced Materials, 35(8). https://doi.org/10.1002/adma.202206762
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.