Role of intracellular na+ kinetics in preconditioned rat heart

26Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

To elucidate the role of intracellular Na+ kinetics in the mechanism for ischemic preconditioning (IPC), we measured intracellular Na+ concentration ([Na+]i) using 23Na-magnenc resonance spectroscopy in isolated rat hearts. IPC significantly delayed the initial [Na+]i increase (d[Na+]i/dt) compared with non-IPC control, resulting in attenuation of Na+ accumulation (Δ[Na+]i) during 27 minutes of ischemia with better functional recovery. [Na+]i in IPC, but not in control, recovered to preischemic level during a 6-minute reperfusion. The Na+-H+ exchange inhibitor further suppressed d[Na+]i/dt in both control and IPC hearts with concomitant improvement of functional recovery, suggesting little contribution to the mechanism of IPC. The mitochondrial ATP-sensitive K+ (mito KATP) channel activator diazoxide (30 μmol/L) completely mimicked both [Na+]i kinetics and functional recovery in IPC without any additive effects to IPC. The mito KATP channel blocker 5-hydroxydecanoic acid (100 μmol/L) lost protective effect as well as the attenuation of d[Na+]i/dt and [Na-]i recovery induced by diazoxide. However, 5-hydroxydecanoic acid also lost IPC-induced protection, but incompletely abolished the alteration of d[Na+]i/dt and the [Na+]i recovery. The Na+/K+-ATPase inhibitor ouabain (200 μmol/L) did not change d[Na+]i/dt in non-IPC hearts, but it abolished the IPCor diazoxide-induced reduction of d[Na+]i/dt and the [Na+]i recovery, whereas IPC followed by ouabain treatment showed partial functional recovery with smaller Δ[Na+]i than other ouabain groups. In conclusion, alteration of Na+ kinetics by preserving Na+ efflux via Na+/K+-ATPase mediated by mito KATP channel activation mainly contributes to functional protection in IPC hearts. The contribution of mito KATP channel-independent pathway relating to Na+ kinetics including reduced Na+ influx is limited in functional protection of IPC.

Cite

CITATION STYLE

APA

Imahashi, K., Nishimura, T., Yoshioka, J., & Kusuoka, H. (2001). Role of intracellular na+ kinetics in preconditioned rat heart. Circulation Research, 88(11), 1176–1182. https://doi.org/10.1161/hh1101.092139

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free