Exploring vegetation dynamics in arid areas and their responses to different natural and anthropogenic factors is critical for understanding ecosystems. Based on the monthly MOD13Q1 (250 m) remote sensing data from 2000 to 2019, this study analyzed spatio-temporal changes in vegetation cover in the Aksu River Basin and predicted future change trends using one-dimensional linear regression, the Mann–Kendall test, and the Hurst index. Quantitative assessment of the magnitude of anthropogenic and natural drivers was performed using the Geodetector model. Eleven natural and anthropogenic factors were quantified and analyzed within five time periods. The influence of the driving factors on the changes in the normalized difference vegetation index (NDVI) in each period was calculated and analyzed. Four main results were found. (1) The overall vegetation cover in the region significantly grew from 2000 to 2019. The vegetation cover changes were dominated by expected future improvements, with a Hurst index average of 0.45. (2) Land use type, soil moisture, surface temperature, and potential vapor dispersion were the main drivers of NDVI changes, with annual average q-values above 0.2. (3) The driving effect of two-factor interactions was significantly greater than that of single factors, especially land use type interacts with other factors to a greater extent on vegetation cover. (4) The magnitude of the interaction between soil moisture and potential vapor dispersion and the magnitude of the interaction between anthropogenic factors and other factors showed an obvious increasing trend. Current soil moisture and human activities had a positive influence on the growth of vegetation in the area. The findings of this study are important for ecological monitoring and security as well as land desertification control.
CITATION STYLE
Ding, Y., Feng, Y., Chen, K., & Zhang, X. (2024). Analysis of spatial and temporal changes in vegetation cover and its drivers in the Aksu River Basin, China. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-60575-9
Mendeley helps you to discover research relevant for your work.