Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers

236Citations
Citations of this article
136Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Homo- and heterodimerization have emerged as prominent features of G-protein-coupled receptors with possible impact on the regulation of their activity. Using a sensitive bioluminescence resonance energy transfer system, we investigated the formation of CXCR4 and CCR2 chemokine receptor dimers. We found that both receptors exist as constitutive homo- and heterodimers and that ligands induce conformational changes within the pre-formed dimers without promoting receptor dimer formation or disassembly. Ligands with different intrinsic efficacies yielded distinct bioluminescence resonance energy transfer modulations, indicating the stabilization of distinct receptor conformations. We also found that peptides derived from the transmembrane domains of CXCR4 inhibited activation of this receptor by blocking the ligand-induced conformational transitions of the dimer. Taken together, our data support a model in which chemokine receptor homo- and heterodimers form spontaneously and respond to ligand binding as units that undergo conformational changes involving both protomers even when only one of the two ligand binding sites is occupied. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Percherancier, Y., Berchiche, Y. A., Slight, I., Volkmer-Engert, R., Tamamura, H., Fujii, N., … Heveker, N. (2005). Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. Journal of Biological Chemistry, 280(11), 9895–9903. https://doi.org/10.1074/jbc.M411151200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free