Laser thinning and patterning of MoS2 with layer-by-layer precision

69Citations
Citations of this article
100Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The recently discovered novel properties of two dimensional materials largely rely on the layercritical variation in their electronic structure and lattice symmetry. Achieving layer-by-layer precision patterning is thus crucial for junction fabrications and device engineering, which hitherto poses an unprecedented challenge. Here we demonstrate laser thinning and patterning with layer-by-layer precision in a two dimensional (2D) quantum material MoS2. Monolayer, bilayer and trilayer of MoS2 films are produced with precise vertical and lateral control, which removes the extruding barrier for fabricating novel three dimensional (3D) devices composed of diverse layers and patterns. By tuning the laser fluence and exposure time we demonstrate producing MoS2 patterns with designed layer numbers. The underlying physics mechanism is identified to be temperature-dependent evaporation of the MoS2 lattice, verified by our measurements and calculations. Our investigation paves way for 3D device fabrication based on 2D layered quantum materials.

Cite

CITATION STYLE

APA

Hu, L., Shan, X., Wu, Y., Zhao, J., & Lu, X. (2017). Laser thinning and patterning of MoS2 with layer-by-layer precision. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-15350-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free