Abstract
We propose a path-based transfer model for machine translation. The model is trained with a word-aligned parallel corpus where the source language sentences are parsed. The training algorithm extracts a set of transfer rules and their probabilities from the training corpus. A rule translates a path in the source language dependency tree into a fragment in the target dependency tree. The problem of finding the most probable translation becomes a graph-theoretic problem of finding the minimum path covering of the source language dependency tree.
Cite
CITATION STYLE
Lin, D. (2004). A path-based transfer model for machine translation. In COLING 2004 - Proceedings of the 20th International Conference on Computational Linguistics. Association for Computational Linguistics (ACL). https://doi.org/10.3115/1220355.1220445
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.