Purpose: It is well known that photon beam radiation therapy requires dose calculation algorithms. The objective of this study was to measure and assess the ability of pencil beam convolution (PBC) and anisotropic analytical algorithm (AAA) to predict doses beyond high density heterogeneity. Materials and Methods: An inhomogeneous phantom of five layers was created in Eclipse planning system (version 8.6.15). Each layer of phantom was assigned in terms of water (first or top), air (second), water (third), bone (fourth), and water (fifth or bottom) medium. Depth doses in water (bottom medium) were calculated for 100 monitor units (MUs) with 6 Megavoltage (MV) photon beam for different field sizes using AAA and PBC with heterogeneity correction. Combinations of solid water, Poly Vinyl Chloride (PVC), and Styrofoam were then manufactured to mimic phantoms and doses for 100 MUs were acquired with cylindrical ionization chamber at selected depths beyond high density heterogeneity interface. The measured and calculated depth doses were then compared. Results: AAA′s values had better agreement with measurements at all measured depths. Dose overestimation by AAA (up to 5.3%) and by PBC (up to 6.7%) was found to be higher in proximity to the high-density heterogeneity interface, and the dose discrepancies were more pronounced for larger field sizes. The errors in dose estimation by AAA and PBC may be due to improper beam modeling of primary beam attenuation or lateral scatter contributions or combination of both in heterogeneous media that include low and high density materials. Conclusions: AAA is more accurate than PBC for dose calculations in treating deep-seated tumor beyond high-density heterogeneity interface.
CITATION STYLE
Rana, S. B. (2013). Dose prediction accuracy of anisotropic analytical algorithm and pencil beam convolution algorithm beyond high density heterogeneity interface. South Asian Journal of Cancer, 02(01), 026–030. https://doi.org/10.4103/2278-330x.105888
Mendeley helps you to discover research relevant for your work.