Classification of Myocardial Infarction using Convolution Neural Network

N/ACitations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Myocardial infarction is one of the most dangerous cardiovascular diseases for most of the people in the world. It is generally confessed as a heart attack. The damage of the heart muscle causes the Myocardial Infraction (MI). When there is a block in heart veins, then the flow of oxygen to the heart muscle also gets blocked, which leads to damage of the heart muscle. The damage is irreversible, so it may lead to death. Quick and exact recognition of MI is required to reduce the death rate. There are several diagnostic tools such as blood tests, ECG is available for the analysis of cardiovascular disease. Among all tools, ECG provides effective results in determining MI, but the manual interpretation of the ECG signal may take time for the doctor to identify the symptoms of MI. The manual interpretation may vary from person to person. Hence a computer-aided diagnostic tool is required to analyze ECG signals effectively for identifying MI. This paper aims to provide an algorithm for the detection of myocardial infarction that operates directly on ECG data. Nowadays Convolutional neural network is cable of analyzing an image effectively so, a deep learning model with the CNN algorithm is used in this paper to classify the images and to identify whether the image has MI or not. The proposed CNN model yields 87% accuracy for the Physikalisch-Technische Bundesanstalt database.

Cite

CITATION STYLE

APA

Classification of Myocardial Infarction using Convolution Neural Network. (2019). International Journal of Recent Technology and Engineering, 8(4), 12763–12768. https://doi.org/10.35940/ijrte.d9230.118419

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free