Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants

36Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Human bones are biological examples of functionally graded lattice capable to withstand large in vivo loading and allowing optimal stress distribution. Disruption of bone integrity may require biocompatible implants capable to restore the original bone structure and properties. This study aimed at comparing mechanical properties and biological behavior in vitro of uniform (POR-FIX) and graded (POR-VAR) Cobalt-chrome alloy lattice structures manufactured via Selective Laser Melting. In compression, the POR-VAR equivalent maximum stress was about 2.5 times lower than that of the POR-FIX. According to the DIC analysis, the graded lattice structures showed a stratified deformation associated to unit cells variation. At each timepoint, osteoblast cells were observed to colonize the surface and the first layer of both scaffolds. Cell activity was always significantly higher in the POR-VAR (p < 0.0005). In terms of gene expression, the OPG/RANKL ratio increased significantly over time (p < 0.0005) whereas IL1β and COX2 significantly decreased (7 day vs 1 day; p < 0.0005) in both scaffolds. Both uniform- and graded-porosity scaffolds provided a suitable environment for osteoblasts colonization and proliferation, but graded structures seem to represent a better solution to improve stress distribution between implant and bone of orthopedic implants.

Cite

CITATION STYLE

APA

Pagani, S., Liverani, E., Giavaresi, G., De Luca, A., Belvedere, C., Fortunato, A., … Caravaggi, P. (2021). Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(12), 2091–2103. https://doi.org/10.1002/jbm.b.34857

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free