Link prediction using a probabilistic description logic

5Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Due to the growing interest in social networks, link prediction has received significant attention. Link prediction is mostly based on graph-based features, with some recent approaches focusing on domain semantics. We propose algorithms for link prediction that use a probabilistic ontology to enhance the analysis of the domain and the unavoidable uncertainty in the task (the ontology is specified in the probabilistic description logic cr ALL). The scalability of the approach is investigated, through a combination of semantic assumptions and graph-based features. We evaluate empirically our proposal, and compare it with standard solutions in the literature. © 2013 The Brazilian Computer Society.

Cite

CITATION STYLE

APA

Luna, J. E. O., Revoredo, K., & Cozman, F. G. (2013). Link prediction using a probabilistic description logic. Journal of the Brazilian Computer Society, 19(4), 397–409. https://doi.org/10.1007/s13173-013-0108-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free