The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes

3.0kCitations
Citations of this article
692Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The step-mountain eta model has shown a surprising skill in forecasting severe storms. Much of the credit for this should be given to the Betts and Miller (hereafter referred to as BM) convection scheme and the Mellor-Yamada (hereafter referred to as MY) planetary boundary layer (PBL) formulation. However, the eta model was occasionally produced heavy spurious precipitation over warm water, as well as widely spread light precipitation over oceans. In addition, the convective forcing, particularly the shallow one, could lead to negative entropy changes. As the possible causes of the problems, the convection scheme, the processes at the air-water interface, and the MY level 2 and level 2.5 PBL schemes were reexamined. A major revision of the BM scheme was made, as new marine viscous sublayer scheme was designed, and the MY schemes were retuned. -from Author

Cite

CITATION STYLE

APA

Janjic, Z. I. (1994). The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927–945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free