Short-channel robustness from negative capacitance in 2D NC-FETs

10Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

To date, the robustness of performance, including tolerance to channel-length scaling effects, in scaled transistors has become increasingly important. Negative capacitance (NC) field-effect transistors (FETs) have drawn considerable attention and many studies have revealed that the NC effect is beneficial for device scaling. However, there is a lack of experimental evidence of short-channel behavior in NC-FETs with two-dimensional (2D) semiconducting channels and theoretical studies are limited. Here, we experimentally study 2D MoS2-based NC-FETs using MoS2 with CMOS-compatible hafnium zirconium oxide (HfZrO2 or HZO) as the ferroelectric (FE) and demonstrate remarkable short-channel behavior compared to similar 2D MoS2 FETs. It was observed that the subthreshold switching improvement becomes increasingly significant at shorter channel lengths, down to 20 nm. From analysis of the capacitive network, we show that the NC effect is impacted by a larger magnitude of polarization in the ferroelectric, which enhances gate control and is beneficial to channel-length scaling.

Cite

CITATION STYLE

APA

Lin, Y. C., Rayner, G. B., Cardenas, J., & Franklin, A. D. (2021). Short-channel robustness from negative capacitance in 2D NC-FETs. Applied Physics Letters, 118(10). https://doi.org/10.1063/5.0030555

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free