RhoA/ROCK/PTEN signaling is involved in AT-101-mediated apoptosis in human leukemia cells in vitro and in vivo

40Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

R-(-)-gossypol acetic acid (AT-101) is a natural cottonseed product that exhibits anticancer activity. However, the molecular mechanism behind the antileukemic activity of AT-101 has not been well characterized. In this study, we investigated how AT-101 induces apoptosis in human leukemia cells. Exposure to AT-101 significantly increased apoptosis in both human leukemia cell lines and primary human leukemia cells. This increase was accompanied by the activation of caspases, cytochrome c release, Bcl2-associated X protein (Bax) translocation, myeloid cell leukemia-1 (Mcl-1) downregulation, Bcl-2-associated death promoter (Bad) dephosphorylation, Akt inactivation, and RhoA/Rho-associated coiled-coil containing protein kinase 1/phosphatase and tensin homolog (RhoA/ROCK1/PTEN) activation. RhoA, rather than caspase-3 cleavage, mediated the cleavage/activation of ROCK1 that AT-101 induced. Inhibiting RhoA and ROCK1 activation by C3 exoenzyme (C3) and Y27632, respectively, attenuated the ROCK1 cleavage/activation, PTEN activity, Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and apoptosis mediated by AT-101. Knocking down ROCK1 expression using a ROCK1-specific siRNA also significantly abrogated AT-101- mediated apoptosis. Constitutively active Akt prevented the AT-101-induced Mcl-1 downregulation, Bad dephosphorylation, and apoptosis. Conversely, AT-101 lethality was potentiated by the phosphatidylinositol 3-kinase inhibitor LY294002. In vivo, the tumor growth inhibition caused by AT-101 was also associated with RhoA/ROCK1/PTEN activation and Akt inactivation in a mouse leukemia xenograft model. Collectively, these findings suggest that AT-101 may preferentially induce apoptosis in leukemia cells by interrupting the RhoA/ROCK1/PTEN pathway, leading to Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and Bax translocation, which culminate in mitochondrial injury and apoptosis. © 2014 Macmillan Publishers Limited.

Cite

CITATION STYLE

APA

Li, G., Liu, L., Shan, C., Cheng, Q., Budhraja, A., Zhou, T., … Gao, N. (2014). RhoA/ROCK/PTEN signaling is involved in AT-101-mediated apoptosis in human leukemia cells in vitro and in vivo. Cell Death and Disease, 5(1). https://doi.org/10.1038/cddis.2013.519

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free