Social commitment protocols regulate interactions of agents in multiagent systems. Several methods have been developed to analyze properties of commitment protocols. However, analysis of an agent's behavior in a commitment protocol, which should take into account the agent's goals and beliefs, has received less attention. In this paper we present ProMoca framework to address this issue. Firstly, we develop an expressive formal language to model agents with respect to their commitments. Our language provides dedicated elements to define commitment protocols, and model agents in terms of their goals, behaviors, and beliefs. Furthermore, our language provides probabilistic and non-deterministic elements to model uncertainty in agents' beliefs. Secondly, we identify two essential properties of an agent with respect to a commitment protocol, namely compliance and goal satisfaction. We formalize these properties using a probabilistic variant of linear temporal logic. Thirdly, we adapt a probabilistic model checking algorithm to automatically analyze compliance and goal satisfaction properties. Finally, we present empirical results about efficiency and scalability of ProMoca.
CITATION STYLE
Gunay, A., Liu, Y., & Zhang, J. (2016). Promoca: Probabilistic modeling and analysis of agents in commitment protocols. Journal of Artificial Intelligence Research, 57, 465–508. https://doi.org/10.1613/jair.5135
Mendeley helps you to discover research relevant for your work.