The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ∼PeV energies and is starting to identify first point source candidates. The next generation facility, IceCube-Gen2, aims at extending the accessible energy range to EeV in order to measure the continuation of the astrophysical spectrum, to identify neutrino sources, and to search for a cosmogenic neutrino flux. As part of IceCube-Gen2, a radio array is foreseen that is sensitive to detect Askaryan emission of neutrinos beyond ∼30 PeV. Surface and deep antenna stations have different benefits in terms of effective area, resolution, and the capability to reject backgrounds from cosmic-ray air showers and may be combined to reach the best sensitivity. The optimal detector configuration is still to be identified. This contribution presents the full-array simulation efforts for a combination of deep and surface antennas, and compares different design options with respect to their sensitivity to fulfill the science goals of IceCube-Gen2.
CITATION STYLE
Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Zierke, S. (2022). Sensitivity studies for the IceCube-Gen2 radio array. In Proceedings of Science (Vol. 395). Sissa Medialab Srl. https://doi.org/10.22323/1.395.1183
Mendeley helps you to discover research relevant for your work.