Introduction: Several indices exist to monitor adequate oxygenation, but no such index exists for ventilatory efficiency. The ventilatory ratio (VR) is a simple tool to monitor changes in ventilatory efficiency using variables commonly measured at the bedside [1]:(Figure presented) See Figure 1 overleaf (where predicted values are VE 100 ml/kg/minute and PaCO2 5 kPa). Methods: The Nottingham Physiology Simulator (NPS), a validated computational model of cardiopulmonary physiology [2], was used to validate the ability of VR to refl ect ventilatory efficiency ex vivo. Three virtual patients were confi gured, representing healthy lung, ARDS and COPD. VR was calculated while minute ventilation, ventilation rate and VCO2 were each varied in isolation. The clinical uses of VR were then examined in a database comprising 122 patients with ALI and ARDS [3]. Standard respiratory data and VR values were analysed in all patients. Results: The NPS model showed significant correlation between VR and physiological deadspace fraction (Vd/Vtphys) at constant VCO2 (P <0.001, r = 0.99). Similarly, VCO2 had a linear relationship with VR at constant Vd/Vtphys. Across the various ventilatory confi gurations the median values and ranges of calculated VR for the three patients were as follows: normal patient VR 0.89 (0.61 to 1.36), COPD 1.36 (0.95 to 1.89) and ARDS 1.73 (1.2 to 2.62). In the ALI /ARDS database the range (Figure presented) of values for VR was 0.56 to 3.93 (median 1.36). Patients with ARDS had a significantly higher VR in comparison with patients with ALI (1.44, 1.25 to 1.77 vs. 1.25, 0.94 to 1.6, P = 0.02). VR was significantly higher in nonsurvivors as compared with survivors (1.7 ± 0.64 vs. 1.45 ± 0.56, P <0.03). There was poor correlation between PaO2/FiO2 ratio and VR in the population (r = -0.32, 95% CI = -0.47 to -0.15). Conclusions: Ex vivo modling shows that VR can be simply and reliably used to monitor ventilatory efficiency at the bedside. VR is infl uenced by changing CO2 production and deadspace ventilation. As a clinical tool it is a predictor of outcome and is independent to PaO2/FiO2 ratio.
CITATION STYLE
Sinha, P., Corrie, K., Bersten, A., Hardman, J., & Soni, N. (2011). Ventilatory ratio: validation in an ex vivo model and analysis in ARDS/ALI patients. Critical Care, 15(S1). https://doi.org/10.1186/cc9599
Mendeley helps you to discover research relevant for your work.