SVM and KNN Based SGO Feature Selection Algorithm for Breast Cancer Diagnosis

  • Hari* P
  • et al.
N/ACitations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In diagnosis and prediction systems, algorithms working on datasets with a high number of dimensions tend to take more time than those with fewer dimensions. Feature subset selection algorithms enhance the efficiency of Machine Learning algorithms in prediction problems by selecting a subset of the total features and thus pruning redundancy and noise. In this article, such a feature subset selection method is proposed and implemented to diagnose breast cancer using Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms. This feature selection algorithm is based on Social Group Optimization (SGO) an evolutionary algorithm. Higher accuracy in diagnosing breast cancer is achieved using our proposed model when compared to other feature selection-based Machine Learning algorithms.

Cite

CITATION STYLE

APA

Hari*, P. S., & Bhaskari, D. L. (2020). SVM and KNN Based SGO Feature Selection Algorithm for Breast Cancer Diagnosis. International Journal of Recent Technology and Engineering (IJRTE), 8(6), 2237–2240. https://doi.org/10.35940/ijrte.d4428.038620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free