Abstract
We have explored the magnetic flux evolution and temperature variation in a coronal hole region, using Big Bear Solar Observatory deep magnetograms and SOHO EIT images observed from 2005 October 10 to 14. For comparison, we also investigated a neighboring quiet region of the Sun. The coronal hole evolved from its mature stage to its disappearance during the observing period. We have obtained the following results: (1) When the coronal hole was well developed on October 10, about 60% of the magnetic flux was positive. The EUV brightness was 420 counts pixel -1 , and the coronal temperature, estimated from the line ratio of the EIT 195 and 171 Å images, was 1.07 MK. (2) On October 14, when the coronal hole had almost disappeared, 51% of the magnetic flux was positive, the EUV radiance was 530 counts pixel -1 , and the temperature was 1.10 MK. (3) In the neighboring quiet region, the fraction of positive flux varied between 0.49 and 0.47. The EUV brightness displayed an irregular variation, with a mean value of 870 counts pixel -1 . The temperature was almost constant at 1.11 MK during the 5 day observation. Our results demonstrate that in a coronal hole less imbalance of the magnetic flux in opposite polarities leads to stronger EUV brightness and higher coronal temperatures. © 2007. The American Astronomical Society. All rights reserved.
Cite
CITATION STYLE
Zhang, J., Zhou, G., Wang, J., & Wang, H. (2007). Magnetic Evolution and Temperature Variation in a Coronal Hole. The Astrophysical Journal, 655(2), L113–L116. https://doi.org/10.1086/511974
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.