Understanding the spatiotemporal characteristics of hydrological components and their impacts on vegetation are critical for comprehending hydrological, climatological, and ecological processes under environmental change and solving future water management challenges. Innovative methods need to be developed in semiarid areas to analyze the special hydrological factors in the water resource systems of these areas. Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) were applied with the normalized difference vegetation index (NDVI) data in this paper to analyze spatiotemporal changes of hydrological factors in the Xiliaohe River Basin (XRB). The results showed that precipitation (P), evapotranspiration (ET) and temperature (T) had similar seasonal change patterns at rates of 0.05 cm/yr., 0.01 cm/yr. and −0.05◦ C/yr., respectively. Total water storage change (TWSC) was consistent with the change trend of soil moisture change (SMC) and showed a fluctuating trend. Groundwater change (GWC) showed a decreasing trend at a rate of −0.43 cm/yr. P and ET had a greater impact on GLDAS data (R = 0.634, P < 0.05 and R = 0.686, P < 0.01, respectively) than on other factors. GWC was more sensitive to changes in T (R = 0.570, P < 0.05). Furthermore, a lag period of 0 to 1 months was observed for the effects of P and ET on TWSC and GLDAS. NDVI showed an upward trend at a rate of 0.001 yr−1 between 2002 and 2014. A spatial distribution of NDVI was heterogeneous in the study area. ET, GLDAS and GWC in growing season limited vegetation growth and were more important than other factors in XRB. The results may contribute to an understanding of the relationships between the hydrological cycle and climate change and provide scientific support for local environmental management.
CITATION STYLE
Zhu, Y., Luo, P., Zhang, S., & Sun, B. (2020). Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sensing, 12(24), 1–19. https://doi.org/10.3390/rs12244177
Mendeley helps you to discover research relevant for your work.