LiFePO4 (LFP) is widely used as cathode material for its low cost, high safety, and good thermal properties. It is one of the most exploited cathode materials for commercial Li-ion batteries (LIBs). Herein, we present a screen-printing method to prepare a LFP composite cathode, and a rational combination of the typical composite solid electrolytes (CSE) consisting of polyethylene oxide (PEO)/Li-salt (LiTFSi) electrolyte with ceramic filler (LLZO or Li6.4La3Zr1.4Ta0.6O12 (LLZTO)) has been successfully demonstrated for SSB. The prepared CSE offers: i) a promising ionic conductivity (0.425 mS cm−1 at 60 °C), ii) a wide electrochemical window (>4.6 V), iii) a high Li-ion transference number (tLi+=0.44), iv) a good interfacial compatibility with the electrode, v) a good thermal stability, and vi) a high chemical stability toward Li metal anode. The Li/CSE/Li symmetric cells can be cycled for more than 1000 h without Li-dendrites growth at a current density of 0.2 mA cm−2. The final cell screen-printed LFP composite cathode (LFP+LLZO)//Li metal displays a high reversible specific capacity of 140 mAh g−1 (0.1 C) and 50 mAh g−1 (0.5 C) after 1st and 500th cycles.
CITATION STYLE
Molaiyan, P., Valikangas, J., Sliz, R., Ramteke, D. D., Hu, T., Paolella, A., … Lassi, U. (2024). Screen-Printed Composite LiFePO4-LLZO Cathodes Towards Solid-State Li-ion Batteries. ChemElectroChem, 11(9). https://doi.org/10.1002/celc.202400051
Mendeley helps you to discover research relevant for your work.