Reporter mutation studies show that nicotinic acetylcholine receptor (nAChR) α5 subunits and/or variants modulate function of α6*-nAChR

15Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To further the understanding of functional α6α5*- nicotinic acetylcholine receptors (nAChR; the asterisk (*) indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4*-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5 V9,S subunits bearing a valine 290 to serine mutation in the 9′ position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR. However, coexpression with mutant chimeric α5/β3 V9,S subunits has a gain-of-function effect (higher functional expression and agonist sensitivity and spontaneous opening inhibited by mecamylamine) on α6β4*- nAChR. Moreover, N143D + M145V mutations in the α6 subunit N-terminal domain enable α5/β3 V9,S subunits to have a gain-of-function effect on α6β2*-nAChR. nAChR containing chimeric α6/α3 subunits plus either β2 or β4 subunits have some function that is modulated in the presence of α5 or α5/β3 subunits. Coexpression with α5/β3 V9,S subunits has a gain-of-function effect more pronounced than that in the presence of α5 V9,S subunits. Gain-of-function effects are dependent, sometimes subtly, on the nature and apparently the extracellular, cytoplasmic, and/or transmembrane domain topology of partner subunits. These studies yield insight into assembly of functional α6α5*-nAChR and provide tools for development of α6*- nAChR-selective ligands that could be important in the treatment of nicotine dependence, and perhaps other neurological diseases. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Dash, B., Chang, Y., & Lukas, R. J. (2011). Reporter mutation studies show that nicotinic acetylcholine receptor (nAChR) α5 subunits and/or variants modulate function of α6*-nAChR. Journal of Biological Chemistry, 286(44), 37905–37918. https://doi.org/10.1074/jbc.M111.264044

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free