Spike-based local synaptic plasticity: a survey of computational models and neuromorphic circuits

31Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of real-time, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to assess if these models can be easily implemented in neuromorphic hardware, and to compare their features and ease of implementation. To this end, in this survey, we provide an overview of representative brain-inspired synaptic plasticity models and mixed-signal complementary metal-oxide-semiconductor neuromorphic circuits within a unified framework. We review historical, experimental, and theoretical approaches to modeling synaptic plasticity, and we identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules. We provide a common definition of a locality principle based on pre- and postsynaptic neural signals, which we propose as an important requirement for physical implementations of synaptic plasticity circuits. Based on this principle, we compare the properties of these models within the same framework, and describe a set of mixed-signal electronic circuits that can be used to implement their computing principles, and to build efficient on-chip and online learning in neuromorphic processing systems.

Cite

CITATION STYLE

APA

Khacef, L., Klein, P., Cartiglia, M., Rubino, A., Indiveri, G., & Chicca, E. (2023, December 1). Spike-based local synaptic plasticity: a survey of computational models and neuromorphic circuits. Neuromorphic Computing and Engineering. Institute of Physics. https://doi.org/10.1088/2634-4386/ad05da

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free