Conditional Probability Joint Extraction of Nested Biomedical Events: Design of a Unified Extraction Framework Based on Neural Networks

11Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Background: Event extraction is essential for natural language processing. In the biomedical field, the nested event phenomenon (event A as a participating role of event B) makes extracting this event more difficult than extracting a single event. Therefore, the performance of nested biomedical events is always underwhelming. In addition, previous works relied on a pipeline to build an event extraction model, which ignored the dependence between trigger recognition and event argument detection tasks and produced significant cascading errors. Objective: This study aims to design a unified framework to jointly train biomedical event triggers and arguments and improve the performance of extracting nested biomedical events. Methods: We proposed an end-to-end joint extraction model that considers the probability distribution of triggers to alleviate cascading errors. Moreover, we integrated the syntactic structure into an attention-based gate graph convolutional network to capture potential interrelations between triggers and related entities, which improved the performance of extracting nested biomedical events. Results: The experimental results demonstrated that our proposed method achieved the best F1 score on the multilevel event extraction biomedical event extraction corpus and achieved a favorable performance on the biomedical natural language processing shared task 2011 Genia event corpus. Conclusions: Our conditional probability joint extraction model is good at extracting nested biomedical events because of the joint extraction mechanism and the syntax graph structure. Moreover, as our model did not rely on external knowledge and specific feature engineering, it had a particular generalization performance.

Cite

CITATION STYLE

APA

Wang, Y., Wang, J., Lu, H., Xu, B., Zhang, Y., Banbhrani, S. K., & Lin, H. (2022). Conditional Probability Joint Extraction of Nested Biomedical Events: Design of a Unified Extraction Framework Based on Neural Networks. JMIR Medical Informatics, 10(6). https://doi.org/10.2196/37804

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free