Multivariate temporal modeling of crime with dynamic linear models

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Interest in modeling contemporary crime trends, a task that has historically been considered valuable to the public, researchers, and policymakers, is resurging. Advancements in criminology have made it clear that understanding crime trends necessarily involves understanding trends in how likely individuals are to report crimes to the police, as well as how likely the police are to accurately record those crimes. In this paper, we use dynamic linear models to simultaneously model the time series for several crime types in order to gain insight into trends in crime and crime reporting. We analyze crime data from Chicago spanning 2007 through 2016 and show how correlations in the way crime trends evolve may contain information about drivers of crime and crime reporting. We provide evidence of substantial differences in the relationships between the trends of crimes of different types depending on whether crimes are violent or nonviolent and whether or not crimes are tracked in the FBI’s Uniform Crime Report.

Cite

CITATION STYLE

APA

Garton, N., & Niemi, J. (2019). Multivariate temporal modeling of crime with dynamic linear models. PLoS ONE, 14(7). https://doi.org/10.1371/journal.pone.0218375

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free