Purpose: The present study was carried out to evaluate anti-inflammatory and antiangiogenic attributes of simvastatin and its nanofilms containing silver nanoparticles. Methods: Silver nanoparticles and simvastatin-loaded nanocomposite (SNSN) films were formulated by using polymeric solution (pectin + sericin) through casting solution method. Different in vitro and in vivo anti-inflammatory assays were performed. In addition, chick chorioallantoic membrane assay (CAM) was also employed for angiogenesis activity. Results: FTIR spectra of the film depicted the presence of intact simvastatin. Differential scanning calorimetry exhibited no endothermic expression in F9 film thermogram. The simvastatin release from all films exhibited a burst effect. Cotton-pellet induced granuloma model study showed that high dose of simvastatin and indomethacin produced comparable (p < 0.05) anti-inflammatory effect. Noteworthy, RT-PCR showed dose-dependent, anti-oedematous effect of simvastatin through downregulation of serum TNF-α and interleukin-1ß levels. While results of CAM assay exhibited remarkable anti-angiogenic potential of SNSN films showing dissolved blood vessels network macroscopically. Conclusion: To reiterate, simvastatin and its SNSN films can add significant contribution to the field of biomedicines due to their promising anti-inflammatory and antiangiogenic properties, however, clinical studies are required to validate their commercial use.
CITATION STYLE
Buabeid, M., Arafa, E. S. A., Yaseen, H. S., Umar, M. I., & Murtaza, G. (2022). Anti-inflammatory effect of simvastatin by impeding TNF-α and interleukin-1ß pathways: antiangiogenic activity of simvastatin and simvastatin-loaded silver nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 50(1), 208–217. https://doi.org/10.1080/21691401.2022.2098306
Mendeley helps you to discover research relevant for your work.