Abstract
Rechargeable Li-I2 battery has attracted considerable attentions due to its high theoretical capacity, low cost and environment-friendliness. Dissolution of polyiodides are required to facilitate the electrochemical redox reaction of the I2 cathode, which would lead to a harmful shuttle effect. All-solid-state Li-I2 battery totally avoids the polyiodides shuttle in a liquid system. However, the insoluble discharge product at the conventional solid interface results in a sluggish electrochemical reaction and poor rechargeability. In this work, by adopting a well-designed hybrid electrolyte composed of a dispersion layer and a blocking layer, we successfully promote a new polyiodides chemistry and localize the polyiodides dissolution within a limited space near the cathode. Owing to this confined dissolution strategy, a rechargeable and highly reversible all-solid-state Li-I2 battery is demonstrated and shows a long-term life of over 9000 cycles at 1C with a capacity retention of 84.1%.
Cite
CITATION STYLE
Cheng, Z., Pan, H., Li, F., Duan, C., Liu, H., Zhong, H., … Zhou, H. (2022). Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy. Nature Communications, 13(1). https://doi.org/10.1038/s41467-021-27728-0
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.