Aerodynamic dispersion of respiratory droplets and aerosols by turbulent airflow

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

The precautionary measures recommended during the current COVID-19 pandemic do not consider the effect of turbulent airflow. We found the propagation of droplets and aerosols highly affected by this condition. The spread of respiratory droplets by the action of sneezing is characterized by the dynamics of two groups of droplets of different sizes: Larger droplets (300-900 µm) have a ballistic trajectory and can be spread up to 5 m, while a cloud of smaller droplets (100-200 µm) can be transported and dispersed at longer distances up to 18 m by the action of the turbulent airflow. In relation to the spread of exhaled aerosols during respiration, these remain in the air for long periods of time. In the presence of intense or moderate airflow, this set of particles follow airflow streamlines, and thus their propagation is directly determined by the air velocity field. Given the scientific evidence, these results should be considered in public debate about the aerodynamic dispersion characteristics of scenarios where social interactions occur and about the measures to mitigate the spread of the virus.

Cite

CITATION STYLE

APA

Cornejo, P., Guerrero, N., & Sandoval, V. (2021). Aerodynamic dispersion of respiratory droplets and aerosols by turbulent airflow. Fluids, 6(3). https://doi.org/10.3390/fluids6030119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free