Aerodynamic performance of a high-speed train passing through three standard tunnel junctions under crosswinds

23Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

The aerodynamic performance of a high-speed train passing through tunnel junctions under severe crosswind condition was numerically investigated using improved delayed detached-eddy simulations (IDDES). Three ground scenarios connected with entrances and exits of tunnels were considered. In particular a flat ground, an embankment, and a bridge configuration were used. The numerical method was first validated against experimental data, showing good agreement. The results show that the ground scenario has a large effect on the train's aerodynamic performance. The bridge case resulted in generally smaller drag and lift, as well as a lower pressure coefficient on both the train body and the inner tunnel wall, as compared to the tunnel junctions with flat ground and embankment. Furthermore, the bridge configuration contributed to the smallest pressure variation in time in the tunnel. Overall, the study gives important insights on complicated tunnel junction scenarios coupled with severe flow conditions, that, to the knowledge of the authors, were not studied before. Beside this, the results can be used for further improvements in the design of tunnels where such crosswind conditions may occur.

Cite

CITATION STYLE

APA

Miao, X., He, K., Minelli, G., Zhang, J., Gao, G., Wei, H., … Krajnovic, S. (2020). Aerodynamic performance of a high-speed train passing through three standard tunnel junctions under crosswinds. Applied Sciences (Switzerland), 10(11). https://doi.org/10.3390/app10113664

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free