Abstract
Gamma mixture models have wide applications in hydrology, finance and reliability. Parameter estimation in this class of models is a challenging task owing to the complexity associated with the model structure. In this paper, a novel approach is proposed to estimate the parameters of Gamma mixture models using Wilson-Hilferty normal-based approximation method. The proposed methodology uses a popular clustering algorithm for Gaussian mixtures namely, MCLUST and a confidence interval based search approach to obtain the estimates. The methodology is implemented on simulated as well as real-life datasets and its performance is compared with gammamixEM() function available in R.
Cite
CITATION STYLE
Vani Lakshmi, R., & Vaidyanathan, V. S. (2016). Parameter Estimation in Gamma Mixture Model using Normal-based Approximation. Journal of Statistical Theory and Applications, 15(1), 25. https://doi.org/10.2991/jsta.2016.15.1.3
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.