Abstract
Fusarium graminearum (F. graminearum) is a destructive pathogenic fungus that causes head blight or scab in wheat, barley and other cereals. To repress pathogen invasion, plants have evolved a sophisticated innate immunity system for pathogen recognition and defense activation. In plant immunity signaling pathways, a lot of small RNAs (sRNAs) have been proved in regulating plant immune response and plant–microbial interaction. In this study, we report that a wheat microRNA (miR1023) can suppress the invasion of F. graminearum by targeting and silencing FGSG_03101 which codes an alpha/beta hydrolase gene in F. graminearum. Transcriptional level evidence indicates that Tae-miR1023 can target FGSG_03101 mRNA and trigger silencing of FGSG_03101 in vivo, and translation level proof shows that Tae-miR1023 can suppress the accumulation of alpha/ beta Hydrolase coding by FGSG_03101 in vitro. F. graminearum PH-1 FGSG_03101 mutant strain displays a weakening ability to invasion and PH-1 Argonaute like gene mutant strains with transferred artificial Tae-miR1023 show enhancing relative transcript level of FGSG_03101, compared with PH-1 wild-type strain. Taken together, our results suggest that wheat miR1023 can target and silence fungal FGSG_03101 to suppress invasion of F. graminearum.
Author supplied keywords
Cite
CITATION STYLE
Jiao, J., & Peng, D. (2018). Wheat microrna1023 suppresses invasion of fusarium graminearum via targeting and silencing fgsg_03101. Journal of Plant Interactions, 13(1), 514–521. https://doi.org/10.1080/17429145.2018.1528512
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.