Abstract
Context. Outflow cavities in envelopes of young stellar objects (YSOs) have been predicted to allow far-UV (FUV) photons to escape far from the central source, with significant observable effects, especially if the protostar is a forming high-mass star suspected of emitting a copious amount of FUV radiation. Indirect evidence of this picture has been provided by models and unresolved single-dish observations, but direct high-resolution data are necessary for confirmation. Previous chemical modeling has suggested that CS and HCN are good probes of the local FUV field, so make good target species. Aims. We directly probe the physical conditions of the material in the outflow walls to test this prediction. Methods. Interferometric observations of the CS(7-6) and HCN(4-3) rotational lines in the high-mass star-forming region AFGL 2591 are carried out in the compact and extended configuration of the SubMillimeter Array (SMA). The velocity structure was analyzed, and integrated maps compared to K-band near-IR observations. A chemical model predicts abundances of CS and HCN for a gas under protostellar X-ray and FUV irradiation, and was used in conjunction with the data to distinguish between physical scenarios. Results. CS and HCN emission was found in spatial coincidence in extended sources displaced up to 7" from the position of the young star. Their line widths are small, excluding major shocks. Chemical model calculations predict an enhanced abundance of the two molecules in warm, dense, and FUV irradiated gas. Hot dust observed between the molecular emission and the outflow accounts for the necessary attenuation to prevent photodissociation of the molecules. Conclusions. The SMA data suggest that the outflow walls are heated and chemically altered by the FUV emission of the central high-mass object, providing the best direct evidence yet of large-scale direct irradiation of outflow walls. © ESO 2009.
Author supplied keywords
Cite
CITATION STYLE
Bruderer, S., Benz, A. O., Bourke, T. L., & Doty, S. D. (2009). Evidence of warm and dense material along the outflow of a high-mass YSO. Astronomy and Astrophysics, 503(2). https://doi.org/10.1051/0004-6361/200912620
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.