This study aimed to statistically and hydrologically assess the performance of the four latest and widely used satellite-gauge combined precipitation estimates (SGPEs), namely CRT (CMORPH CRT), BLD (CMORPH BLD), CDR (PERSIANN CDR), 3B42 (TMPA 3B42 version 7) over the upper yellow river basins (UYRB) in china during 2001-2012 time period. The performances of the SGPEs were compared with the Chinese Meteorological Administration (CMA) datasets using the hydrologic model called Variable Infiltration Capacity (VIC) which is known as a land surface hydrologic model. Results indicated that irrespective of the slight underestimation in the western mountains and overestimation in the southeast, the four SGPEs could generally captured the spatial distribution of precipitation well. Although 3B42 exhibited a better performance in capturing the spatial distribution of daily average precipitation, BLD agreed best with CMA in the time series of watershed average precipitation, which resulted in BLD having a comparable performance to the CMA in the long-term hydrological simulations. Moreover, the potential for disastrous heavy rain mainly occurs in southeastern corner of the basin, and CRT and BLD comparisons showed to be closer to the CMA in the distribution of extreme precipitation events while 3B42 and CDR overestimated the extreme precipitation especially over the southeast of UYRB region. Therefore, CRT and BLD were able to match the high peak discharges very well for the wet seasons, while 3B42 and CDR overrated the high peak discharges. In addition, the four SGPEs performed well for the 2005 flood event but exhibited poorly when tested for the 2012 flood event. Results indicate that the application of the four SGPEs should be used with caution in simulating massive flood events over UYRB region.
CITATION STYLE
Su, J., Lü, H., Wang, J., Sadeghi, A. M., & Zhu, Y. (2017). Evaluating the applicability of four latest satellite-gauge combined precipitation estimates for extreme precipitation and streamflow predictions over the upper yellow river basins in China. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111176
Mendeley helps you to discover research relevant for your work.