Abstract
We investigate a stationary random coefficient autoregressive process. Using renewal type arguments tailor-made for such processes, we show that the stationary distribution has a power-law tail. When the model is normal, we show that the model is in distribution equivalent to an autoregressive process with ARCH errors. Hence, we obtain the tail behavior of any such model of arbitrary order. © Institute of Mathematical Statistics, 2004.
Author supplied keywords
Cite
CITATION STYLE
Klüppelberg, C., & Peroamenchtchikov, S. (2004). The tail of the stationary distribution of a random coefficient AR(q) model. Annals of Applied Probability, 14(2), 971–1005. https://doi.org/10.1214/105051604000000189
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.