Abstract
We have shown recently that mouse small cerebellar neurons adhere to a short amino acid sequence of the G2 domain of the laminin α1 chain via the cell surface-expressed HNK-1 carbohydrate. Therefore, we were interested in identifying glycoproteins carrying the HNK-1 carbohydrate at the cell surface of these neurons. Adhesion of small cerebellar neurons to laminin is partially dependent on Ca2+, MR2+, and Mg2+, indicating the involvement of integrins, which were identified as β1, α3, and α6. They could be shown to bind to laminin by a β1-dependent adhesion mechanism. None of these subunits was found to carry the HNK-1 carbohydrate. HNK-1-immunoreactive glycoproteins were immunoprecipitated and shown to consist of predominantly one molecular species, which was identified as the neural cell recognition molecule L1. L1 was demonstrated to bind in a concentration-dependent and saturating manner to laminin. The binding could be partially inhibited by Fab fragments of monoclonal antibodies against the HNK-1 carbohydrate and against the Ig-like domains of L1. Furthermore, antibodies to the Ig-like domains of L1 and β1 integrin inhibited partially cell adhesion to laminin. Determination of the association of L1, β1 integrin, and the HNK-1 carbohydrate on the cell surface of live cerebellar neurons by antibody- induced patching and copatching revealed HNK-1 to be linked to L1, but less so to β1 integrin. However, only negligible association was found between L1 and β1 integrin. Furthermore, it could be shown that adhesion to laminin is mediated by L1/HNK-1- and β1 integrin-dependent mechanisms that act at least partially independent of each other.
Author supplied keywords
Cite
CITATION STYLE
Hall, H., Carbonetto, S., & Schachner, M. (1997). L1/HNK-1 carbohydrate- and β1 integrin-dependent neural cell adhesion to laminin-1. Journal of Neurochemistry, 68(2), 544–553. https://doi.org/10.1046/j.1471-4159.1997.68020544.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.