Observation of an isomerizing double-well quantum system in the condensed phase

27Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Molecular isomerization fundamentally involves quantum states bound within a potential energy function with multiple minima. For isolated gas-phase molecules, eigenstates well above the isomerization saddle points have been characterized. However, to observe the quantum nature of isomerization, systems in which transitions between the eigenstates occur-such as condensed-phase systems-must be studied. Efforts to resolve quantum states with spectroscopic tools are typically unsuccessful for such systems. An exception is CO adsorbed on NaCl(100), which is bound with the well-known OC-Na+ structure. We observe an unexpected upside-down isomer (CO-Na+) produced by infrared laser excitation and obtain well-resolved infrared fluorescence spectra from highly energetic vibrational states of both orientational isomers. This distinctive condensed-phase system is ideally suited to spectroscopic investigations of the quantum nature of isomerization.

Cite

CITATION STYLE

APA

Lau, J. A., Choudhury, A., Chen, L., Schwarzer, D., Verma, V. B., & Wodtke, A. M. (2020). Observation of an isomerizing double-well quantum system in the condensed phase. Science, 367(6474), 175–178. https://doi.org/10.1126/science.aaz3407

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free