Background: Human ether-à-go-go-related gene (hERG) potassium-channel block represents a harmful side effect of drug therapy that may cause torsade de pointes (TdP). Analysis of ventricular repolarization through electrocardiographic T-wave features represents a noninvasive way to accurately evaluate the TdP risk in drug-safety studies. This study proposes an artificial neural network (ANN) for noninvasive electrocardiography-based classification of the hERG potassium-channel block. Methods: The data were taken from the “ECG Effects of Ranolazine, Dofetilide, Verapamil, and Quinidine in Healthy Subjects” Physionet database; they consisted of median vector magnitude (VM) beats of 22 healthy subjects receiving a single 500 μg dose of dofetilide. Fourteen VM beats were considered for each subject, relative to time-points ranging from 0.5 hr before to 14.0 hr after dofetilide administration. For each VM, changes in two indexes accounting for the early and the late phases of repolarization, ΔERD30% and ΔTS/A, respectively, were computed as difference between values at each postdose time-point and the predose time-point. Thus, the dataset contained 286 ΔERD30%-ΔTS/A pairs, partitioned into training, validation, and test sets (114, 29, and 143 pairs, respectively) and used as inputs of a two-layer feedforward ANN with two target classes: high block (HB) and low block (LB). Optimal ANN (OANN) was identified using the training and validation sets and tested on the test set. Results: Test set area under the receiver operating characteristic was 0.91; sensitivity, specificity, accuracy, and precision were 0.93, 0.83, 0.92, and 0.96, respectively. Conclusion: OANN represents a reliable tool for noninvasive assessment of the hERG potassium-channel block.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Morettini, M., Peroni, C., Sbrollini, A., Marcantoni, I., & Burattini, L. (2019). Classification of drug-induced hERG potassium-channel block from electrocardiographic T-wave features using artificial neural networks. Annals of Noninvasive Electrocardiology, 24(6). https://doi.org/10.1111/anec.12679