Multiple Time Series Fusion Based on LSTM: An Application to CAP A Phase Classification Using EEG

5Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

The Cyclic Alternating Pattern (CAP) is a periodic activity detected in the electroencephalogram (EEG) signals. This pattern was identified as a marker of unstable sleep with several possible clinical applications; however, there is a need to develop automatic methodologies to facilitate real-world applications based on CAP assessment. Therefore, a deep learning-based EEG channels’ feature level fusion was proposed in this work and employed for the CAP A phase classification. Two optimization algorithms optimized the channel selection, fusion, and classification procedures. The developed methodologies were evaluated by fusing the information from multiple EEG channels for patients with nocturnal frontal lobe epilepsy and patients without neurological disorders. Results showed that both optimization algorithms selected a comparable structure with similar feature level fusion, consisting of three electroencephalogram channels (Fp2–F4, C4–A1, F4–C4), which is in line with the CAP protocol to ensure multiple channels’ arousals for CAP detection. Moreover, the two optimized models reached an area under the receiver operating characteristic curve of 0.82, with average accuracy ranging from 77% to 79%, a result in the upper range of the specialist agreement and best state-of-the-art works, despite a challenging dataset. The proposed methodology also has the advantage of providing a fully automatic analysis without requiring any manual procedure. Ultimately, the models were revealed to be noise-resistant and resilient to multiple channel loss, being thus suitable for real-world application.

Cite

CITATION STYLE

APA

Mendonça, F., Mostafa, S. S., Freitas, D., Morgado-Dias, F., & Ravelo-García, A. G. (2022). Multiple Time Series Fusion Based on LSTM: An Application to CAP A Phase Classification Using EEG. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191710892

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free