Risk assessment of released cellulose nanocrystals-mimicking inhalatory exposure

15Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cellulose nanocrystals (CNCs) exhibit advantageous chemical and mechanical properties that render them attractive for a wide range of applications. During the life-cycle of CNC containing materials the nanocrystals could be released and become airborne, posing a potential inhalatory exposure risk towards humans. Absent reliable and dose-controlled models that mimic this exposure in situ is a central issue in gaining an insight into the CNC-lung interaction. Here, an Air Liquid Interface Cell Exposure system (ALICE), previously designed for studies of spherical nanoparticles, was used for the first time to establish a realistic physiological exposure test method for inhaled fiber shaped nano-objects; in this case, CNCs isolated from cotton. Applying a microscopy based approach the spatially homogenous deposition of CNCs was demonstrated as a prerequisite of the functioning of the ALICE. Furthermore, reliability and controllability of the system to nebulise high aspect ratio nanomaterials (HARN, e.g. CNCs) was shown. This opens the potential to thoroughly investigate the inhalatory risk of CNCs in vitro using a realistic exposure system. © IOP Publishing Ltd 2013.

Cite

CITATION STYLE

APA

Endes, C., Müller, S., Schmid, O., Vanhecke, D., Foster, E. J., Petri-Fink, A., … Clift, M. J. D. (2013). Risk assessment of released cellulose nanocrystals-mimicking inhalatory exposure. In Journal of Physics: Conference Series (Vol. 429). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/429/1/012008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free