Opinion-unaware no-reference image quality assessment (NR-IQA) methods have received many interests recently because they do not require images with subjective scores for training. Unfortunately, it is a challenging task, and thus far no opinion-unaware methods have shown consistently better performance than the opinion-aware ones. In this paper, we propose an effective opinion-unaware NR-IQA method based on reinforcement recursive list-wise ranking. We formulate the NR-IQA as a recursive list-wise ranking problem which aims to optimize the whole quality ordering directly. During training, the recursive ranking process can be modeled as a Markov decision process (MDP). The ranking list of images can be constructed by taking a sequence of actions, and each of them refers to selecting an image for a specific position of the ranking list. Reinforcement learning is adopted to train the model parameters, in which no ground-truth quality scores or ranking lists are necessary for learning. Experimental results demonstrate the superior performance of our approach compared with existing opinion-unaware NR-IQA methods. Furthermore, our approach can compete with the most effective opinion-aware methods. It improves the state-of-the-art by over 2% on the CSIQ benchmark and outperforms most compared opinion-aware models on TID2013.
CITATION STYLE
Gu, J., Meng, G., Da, C., Xiang, S., & Pan, C. (2019). No-reference image quality assessment with reinforcement recursive list-wise ranking. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 (pp. 8336–8343). AAAI Press. https://doi.org/10.1609/aaai.v33i01.33018336
Mendeley helps you to discover research relevant for your work.