IRF-1 contributes to the pathological phenotype of VSMCs during atherogenesis by increasing CCL19 transcription

12Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Atherosclerosis (AS) is a chronic inflammatory disease that mainly involves the large and middle arteries, but the specific mechanism is not precise. Chemokine ligand 19 (CCL19) has been reported highly expressed in peripheral blood of patients with atherosclerosis, but its role lacks explicit data. By ELISA assay and immunohistochemical (IHC) analysis, we found that the CCL19 was significantly up-regulated in AS. Therefore, we tried to clarify whether CCL19 expression was related to the progression of AS. QRT-PCR and western blot demonstrated that overexpression of CCL19 promoted the secretion of inflammatory factors and the deposition of the extracellular matrix, and facilitated the proliferation and migration of VSMCS. Besides, knockdown of CCL19 reduced the inflammation, collagen secretion, proliferation and migration of VSMCS induced by PGDF-BB. The results of database analysis, chromatin immunoprecipitation (ChIP) and luciferase assay showed that interferon regulatory factor 1 (IRF-1) activated the expression of CCL19 at the transcriptional level. Importantly, silencing IRF-1 inhibited atherosclerosis in high-fat-fed mice, inhibited the proliferation and migration of VSMCS, and down-regulated the expression of CCL19. Summing up, the results demonstrated that IRF-1 contributed to the pathological phenotype of VSMCs during atherogenesis by increasing CCL19 transcription.

Author supplied keywords

Cite

CITATION STYLE

APA

Shen, Y., Sun, Z., Mao, S., Zhang, Y., Jiang, W., & Wang, H. (2021). IRF-1 contributes to the pathological phenotype of VSMCs during atherogenesis by increasing CCL19 transcription. Aging, 13(1), 933–943. https://doi.org/10.18632/aging.202204

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free