Glycine in aerosol water droplets: A critical assessment of Köhler theory by predicting surface tension from molecular dynamics simulations

25Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

Aerosol particles in the atmosphere are important participants in the formation of cloud droplets and have significant impact on cloud albedo and global climate. According to the Köhler theory which describes the nucleation and the equilibrium growth of cloud droplets, the surface tension of an aerosol droplet is one of the most important factors that determine the critical supersaturation of droplet activation. In this paper, with specific interest to remote marine aerosol, we predict the surface tension of aerosol droplets by performing molecular dynamics simulations on two model systems, the pure water droplets and glycine in water droplets. The curvature dependence of the surface tension is interpolated by a quadratic polynomial over the nano-sized droplets and the limiting case of a planar interface, so that the so-called Aitken mode particles which are critical for droplet formation could be covered and the Köhler equation could be improved by incorporating surface tension corrections. © 2011 Author(s).

Cite

CITATION STYLE

APA

Li, X., Hede, T., Tu, Y., Leck, C., & Ågren, H. (2011). Glycine in aerosol water droplets: A critical assessment of Köhler theory by predicting surface tension from molecular dynamics simulations. Atmospheric Chemistry and Physics, 11(2), 519–527. https://doi.org/10.5194/acp-11-519-2011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free