Abstract
To improve the ionic conductivity and thermal stability of a polyethylene oxide (PEO)-ethylene carbonate (EC)-LiClO4-based solid polymer electrolyte for lithium-ion batteries, polymethyl methacrylate (PMMA) and silica aerogel were incorporated into the PEO matrix. The effects of the PEO:PMMA molar ratio and the amount of silica aerogel on the structure of the PEO-PMMA-LiClO4 solid polymer electrolyte were studied by X-ray diffraction, Fourier-transform infrared spectroscopy and alternating current (AC) impedance measurements. The solid polymer electrolyte with PEO:PMMA = 8:1 and 8 wt% silica aerogel exhibited the highest lithium-ion conductivity (1.35 × 10−4 S·cm−1 at 30◦C) and good mechanical stability. The enhanced amorphous character and high degree of dissociation of the LiClO4 salt were responsible for the high lithium-ion conductivity observed. Silica aerogels with a high specific surface area and mesoporosity could thus play an important role in the development of solid polymer electrolytes with improved structure and stability.
Author supplied keywords
Cite
CITATION STYLE
Lim, Y. S., Jung, H. A., & Hwang, H. (2018). Fabrication of PEO-PMMA-LiClO4-Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries. Energies, 11(10). https://doi.org/10.3390/en11102559
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.