Abstract
We show that every C β f : G 2 ( M ) β R , M n {C^\infty }f:{G_2}(M) \to {\mathbf {R}},{M^n} a compact connected riemannian manifold n β©Ύ 3 n \geqslant 3 , is the scalar curvature function of some complete riemannian metric on G 2 ( M ) {G_2}(M) , the grassmann bundle of 2 2 planes over M M , except possibly when K = constantΒ β©Ύ 0 K = {\text {constant }} \geqslant 0 . A similar result holds for O ( M ) O(M) bundle of orthonormal frames on M M .
Cite
CITATION STYLE
Rigas, A. (1976). Scalar curvatures on π(π),πΊβ(π). Proceedings of the American Mathematical Society, 61(1), 93β98. https://doi.org/10.1090/s0002-9939-1976-0425832-1
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.