Dielectric properties in three main directions for hinoki wood (Chamaecyparis obtusa) specimens conditioned at various levels of relative humidity were measured in the frequency range from 20 Hz to 10 MHz over the temperature range from -150°C to 20°C. Three relaxations were observed in the specimens conditioned at high levels of relative humidity. The relaxation in the highest frequency range was ascribed to the motions of adsorbed water molecules. The relaxation in the middle frequency range remained unchanged by the ethanol-benzene extraction of specimens. The relaxation location was independent of measuring directions. The relaxation in the lowest frequency range was not detected in the specimens impregnated with methyl methacrylate (MMA). This result suggested that the relaxation was due to electrode polarization. The Cole-Cole circular arc law applied well to two relaxations recognized in the specimens impregnated with MMA. The relaxation magnitude in the middle frequency range was extremely large, and the distribution of relaxation times was very narrow. These characteristics suggested relaxation of the Maxwell-Wagner type resulting from the interfacial polarization in the heterogeneous structure, which included adsorbed water with large electrical conductivity within the insulating cell walls. © The Japan Wood Research Society 2005.
CITATION STYLE
Sugimoto, H., Takazawa, R., & Norimoto, M. (2005). Dielectric relaxation due to heterogeneous structure in moist wood. Journal of Wood Science, 51(6), 549–553. https://doi.org/10.1007/s10086-004-0688-1
Mendeley helps you to discover research relevant for your work.